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LETTER TO THE EDITOR 

Ultradiffusion: the relaxation of hierarchical systems 

B A Huberman and Michel Kerszberg? 
Xerox Palo Alto Research Center, Palo Alto, CA 94304, USA 

Received 29 January 1985 

Abstract. We show that the dynamics of relaxation in hierarchical structures leads to an 
anomalous decay process which we term ultradiff usion. Using renormalisation group 
techniques, we explicitly calculate the behaviour of the autocorrelation function in a 
one-dimensional hierarchical system and show its universal power law decay as a function 
of temperature. We also demonstrate analytically the emergence of a hierarchy of time 
scales. This phenomenon is relevant to systems ranging from macromolecules to computing 
structures. 

Complexity in natural and artificial systems often manifests itself in hierarchical 
fashion: at any given level of the system the effect of the lower echelons can, for all 
practical purposes, be integrated over while the larger scale structures are essentially 
frozen and act as static constraints. The following example of this behaviour was 
introduced by Simon and Ando (1961) while studying the long-time behaviour of 
economic systems. Consider the thermalisation of a building partitioned by thick walls, 
the large rooms being in turn divided by thinner screens which in turn contain rooms 
partitioned by thinner ones. If an initial temperature gradient is established in the 
building, the approach to equilibrium through partitions with different thermal conduc- 
tivities will lead to diffusion coefficients whose actual values depend on time. This 
process is reminiscent of the non-ergodic behaviour exhibited by systems with a 
hierarchy of energy barriers, as reported in molecular diffusion on complex 
macromolecules by Austin et a1 (1975), in macromolecule motions by Levitt (1982), 
some one-dimensional superionic conductors studied by Boyce and Huberman ( 1979), 
and for the spin glass systems investigated by Sompolinsky (1981) and Palmer et a1 
(1984). Other systems with a large multiplicity of time scales might range from 
computing structures, as examined by Huberman and Hogg (1984), to evolutionary 
processes which were discussed by Simon (1962) many years ago. 

Mathematically, Markovian hierarchical systems are described by stochastic transi- 
tion matrices which are near-decomposable, and solving for their dynamics amounts 
to an efficient evaluation of their eigenvalues. The spectrum of such matrices always 
contains the value one, corresponding to the state S of complete equilibrium; i.e. ; 
MS( t )  = S (  t + 1 )  = S (  t ) ,  with M the transition matrix. Moreover, the smaller eigen- 
values cluster densely around one, leading to abnormal transient phenomena. 

A common feature of hierarchical systems is that they can be characterised by an 
ultrametric topology, as described by Bourbaki (1966), and postulated for the spin 
glass problem by MCzard et al (1984); i.e. a distance d can be defined so that any 
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triplet of states can be labelled in such a way that their respective distances obey, 

d ( a, b )  = d (b, d )  3 d (c, a) .  ( 1 )  

In what follows, we will construct a simple one-dimensional model which possesses 
such a topology and study its dynamical properties by explicit renormalisation. We 
also show that for thermally activated processes, the relaxation of the autocorrelation 
function obeys a universal algebraic law which we term ultradiffusion. In particular, 
its long-time behaviour is characterised by an effective dimensionality which is tem- 
perature dependent, leading to an anomalous low-frequency spectrum reminiscent of 
the l/f noise type of phenomena observed in a variety of systems reviewed by Hooge 
et a1 (1981). Finally, we discuss the relevance of ultradiffusion to the self-repairing 
computing arrays recently introduced by Huberman and Hogg. 

Consider a particle hopping from cell to cell on a line with energy barriers distributed 
in a hierarchical way as shown on figure l ( a ) .  The barriers are labelled by E ~ ,  the 
probability that they will be crossed in unit time. Hence, the taller the barrier the 
smaller is E.  It is easy to see that such a system has an ultrametric topology, i.e. it 
obeys equation ( 1 )  if we define d(a,  b )  to be the largest barrier between cells a and 
b. As illustrated in figure l ( b )  to travel between two points in the top branches of the 
tree without leaving it, one must go down by a number of levels equal to the ultrametric 
distance separating the points. Furthermore, we take the ratio of two successive barrier 
heights, R = E ~ + , / E ~ ,  to be much smaller than one. With this assumption the system 
displays a well defined hierarchy of relaxation times, which we now evaluate. 

a b c d a' b' c' d'  

Figure 1. ( a )  Hierarchical array of barriers over which a particle diffuses. The barriers 
are labelled by E,,  the probability per unit time that they will be crossed; E ,  is small for a 
tall barrier. The hierarchy may or may not extend down to infinity. ( b )  Ultrametric 
structure: to travel between two points in the top branches of the tree without leaving the 
tree, one must go down by a number of levels equal to the ultrametric distance separating 
the points. 
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The basic idea of our renormalisation scheme is to observe that after a length of 
time T~ 5 1/ eo the statistical distribution on both sides of the lowest barriers is roughly 
equalised. Once this happens these barriers can be safely ignored as there is no net 
flux across them. However, the net flux through the next higher barrier, E ' ,  is renor- 
malised in this process. We must therefore write an approximate master equation for 
the populations of four cells, a, 6, c, d in figure l (a ) :  

dPd/dt = EoPc - EoPd + 6d 
where Sa and 6d are correction terms which are at least of order R 2  (see below). From 
these equations, we can compute the probability that either cell c or d be occupied 
after a time  AT^, with A = O( l ) ,  assuming that the particle is initially in a or b. We obtain 

2 1/2 Pc + P d  = f + U-[ 1 + ( 1  f R )] exp{[-El - Eo+ ( E : +  E ~ ) ' / ~ ] A T ~ }  

+[1 - ( 1  +R2)]1'2 exp{[-s, - E ~ - ( & : - E ~ ) ~ / ~ ] A T ~ } ~ ~ ( ~  +R2) - ' I2  (3) 

which in the limit of small R becomes 

R[1 - R +( 1 + R 2 ) 9  
4( 1 + R2)II2 " 

Pc + Pd =  AT^ (4) 

with T~ = E O ' .  Hence, the approximate effective value of 
by 

(the transition rate) is given 

1 - R + ( l + R 2 ) ' / 2  

4( 1 + R2)II2 
E ;  = 

In order to implement the renormalisation procedure for the higher barriers, we first 
consider and the eight cells adjacent to the barrier. Defining block cells a',  6',  c', d' 
(see figure l (a ) )  and replacing in equation ( 2 )  E ,  by c2 and 
as given by equation ( 5 ) ,  we obtain 

by the renormalised 

Pc + Pd = & ~ T ~ E ~  

E ;  = ;E2.  (7) 

( 6 )  
which defines a renormalised transition rate e;  as 

Equation ( 7 )  describes a simple geometrical effect: while on each side of the barrier 
there is only one block cell from which the particle can actually jump over E ~ ,  it may 
be found in any of two blocks with equal probability. Similarly, by considering blocks 
containing 2' cells clustered in groups of four around a barrier E ~ ,  and with, at the 
level i -  1, two barriers we can derive for E :  an expression analogous to equation 
( 7 ) .  Denoting the iteration number by superscripts, and relabelling 
leads to the final recursion relations, which to order R 2  are given by 

+ &io),  E :  + 
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These equations describe the renormalisation of the relaxation time at each step i of 
the iterationt. A single quantity, eo, replaces 2N-i nearly degenerate eigenvalues of 
the original transition matrix, where N is the total number of levels in the hierarchy. 
We should also point out that although, in principle, one might want to write more 
accurate recursion relations by solving at each level a higher order differential system, 
it is unnecessary to do so since the lowest order transformation is already quite accurate. 
For example, for R = lo-', eo= and with five levels in the hierarchy, the closest 
eigenvalue to 1 is 1 - 1.18 x lo-' (evaluated by direct numerical diagonalisation) while 
the recursion relations yield 1 - 1.17 x IO-'. 

We now proceed to compute the autocorrelation function, which for a large system 
is approximately position independent. Since at each time scale the probability of 
finding the particle effectively spreads over a region twice the original, we may write 
for the autocorrelation function Pa, 

N 

Pa, = 1 exp( - mi)/2'+'  
i = O  

(9) 

where T~ = 1 / ~ ; ) .  Assuming that at a given time t the exponentials corresponding to 
T~ > t are still of order one, while those with T~ < t have decayed to zero, one obtains 

In this equation, i is related to t by 

t -A(R/2) ' - '4R- ' / (2-R)-  A(R/2) '- ' (2R-'+ 1 )  

with A = O( 1) .  Inverting this relation, and assuming a thermal activation picture (i.e.; 
R a exp(constant/ T ) ,  we obtain an expression applicable to a number of physical 
systems, i.e. 

This formula explicitly displays the algebraic nature of the decay and the temperature 
dependence of both the exponent and prefactor. It also shows how in hierarchical 
systems the exponent, which plays the role of an effective dimensionality, tends to 
zero as the temperature is lowered, leading to an anomalous low-frequency noise 
spectrum. 

We have verified our calculations by numerically simulating diffusion in hierarchical 
structures of the type discussed here. For the cases R = e-' and R = we find that 
the autocorrelation function behaves as and respectively. This shows that, 
in spite of the fact that R is not very small, the exponents agree with those given by 
equation (11)  to within 6%.  It should also be mentioned that recent computer 
simulations of spin glasses have yielded a power law decay of the remanent magnetisa- 
tion, with a temperature-dependent exponent (Kinzel 1985). 

The methods we have developed can also be used to compute other quantities such 
as the moments of the Green function, e.g. the average distance travelled by the 
particle. The latter is given by 

N 

d = C sgn(i)[l - e x p ( - r / ~ ~ ) ] / 2 ~ - ' + '  
i = O  

t It can be shown (to be published) that equation (8) is accurate to O(R ' )  in providing a upper bound for 
the relaxation time, in spite of the fact that the neglected terms in equation (2), 8, and S,, are themselves 
of this order. 
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where sgn( i )  denotes the direction (right = + 1, left = - 1 ) of the particle net displacement 
at scale i, and which depends on its starting point. (The quantity sgn( i )  can be thought 
of as equal to 1 -2xp’, where xy) is the ith bit after the ‘decimal’ point in the binary 
representation of the starting abscissa x). We thus see that, in general, a given particle 
has a net average motion, even in the absence of a force acting on it. However, an 
ensemble of particles will have no net motion since in that case equation (1 2) has to 
be averaged over all possible bit sequences. As a final remark we note here that (d’ ) ,  
with brackets denoting ensemble average grows with a temperature-dependent algebraic 
exponent which is the negative of the one for the autocorrelation function; this can 
be seen by squaring equation (12) and performing the averages within the same 
approximations that led to equation (1 1). 

We now discuss the relevance of our results to layered computing structures of the 
type studied by Huberman and Hogg (1984). Such architectures, which display remark- 
able immunity to errors, can be shown to have an ultrametric topology. The ultrametric 
distance between two inputs is now defined as the number of layers that are affected 
when the inputs are interchanged. 

Because of the existence of such topology, layered computing arrays are good 
candidates for the observation of ultradiffusion. Consider a possible output state of 
such a computer. To this one final state there correspond several states in the preceding 
layer: thus a tree or attractor is attached in state space to every possible output of the 
array. If the input is allowed to diffuse because of noise, one can monitor the state 
of the machine whenever it returns to its initial output. This amounts to a random 
walk at the top of the attractor, with changes of state at each step reaching a depth 
equal to the ultrametric distance between successive inputs. We have numerically 
simulated a layered machine where each gate in a given layer receives three input bits, 
one from the gate immediately above it, and two from the latter’s neighbours, and 
with its output set to 0 or 1 according to a majority rule at the input level. As the top 
layer inputs are made to diffuse by bit exchange, we let the output wander while 
simultaneously computing its autocorrelation function. We then observed that it decays 
algebraically in time, with an effective dimensionality which decreases with the number 
of layers. Next, we singled out those configurations which produced the same output 
and computed the autocorrelation function of the nth layer, which once again exhibited 
algebraic decay, the signature of ultradiffusion. (Notice that increasing the value of 
n is equivalent to carrying out one more step of the renormalisation transformations 
given by equation (8 ) ) .  

In summary, we have introduced and studied a simple model of diffusion in 
hierarchical structures. The model displays interesting dynamics, such as algebraic 
decay of autocorrelations and temperature-dependent dimensionality, which should 
be observable in a number of systems. We believe that the widespread occurrence of 
hierarchical organisation in nature and artificial systems gives our results a significance 
which reaches beyond this simple example. 

This research was partially supported by ONR contract NOOO14-82-0699. 
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